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Abstract
We study the propagation of electromagnetic waves in infinite lines with grafted
finite lines in a frequency regime, where the grafted lines have negative phase
velocity. The physical properties of such a structure with negative phase velocity
materials have not been investigated before, to the best of our knowledge. The
theory uses a Green’s function formalism. For a single resonator structure we
calculate the transmission intensity, and for periodic systems, we determine the
transmission intensities and the miniband structures as functions of the number
of resonators. In a single resonator structure, resonances are manifested as dips
in the transmission, which evolve into stopping minigaps for periodic systems.
The dispersion relations of collective normal modes exhibit new allowed
minibands or stopping minigaps for the electromagnetic wave propagation,
which depend on the number of resonators and the resonator size. These
results are in agreement with the features of the transmission spectra. We
also investigate the effects of dissipation on the transmission spectra of such
structures.

1. Introduction

Negative phase velocity materials with negative permittivity (ε) and negative permeability (µ),
which were predicted many years ago in the pioneering work of Veselago [1], have attracted a
growing interest during the last few years [2–7]. They are theoretically predicted to offer many
new potential applications [8, 9] in optical and electromagnetic devices, thanks to their unusual
properties. Assuming the possibility of realizing such materials under the form of layered
media, recent studies [10–14] have investigated the photonic band structure of one-dimensional
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(1D) layered structures composed of alternating layers of positive and negative phase velocity
materials. Negative phase velocity materials have been used to realize an absolute photonic
gap [14] (and also to widen this stop band) with 1D photonic crystals independently of the
incidence angles and the polarization of the optical wave.

The propagation of electromagnetic waves in 1D systems such as superlattices [15]
and quasi-1D comb-like structures [16, 17] is another issue of interest in electromagnetic
devices. In these composite systems, the contrast in dielectric (ε) properties between the
constituent materials is emerging as a critical parameter in determining the existence of
electromagnetic gaps. Let us recall that the comb-like structure is composed of back-bone
(substrate) waveguiding along which finite side branches are grafted periodically. The materials
forming such a structure were supposed until now not to be magnetic (µ = 1) and to
have a positive and frequency independent ε. In our present paper, we investigate the novel
electromagnetic properties of the comb-like structure when one of the material constituting
this quasi-1D structure has simultaneously negative frequency dependent ε and µ in a certain
range of frequency. Our studies differ from those of [16] as we concentrate on a small frequency
region where the resonators have negative phase velocity. We investigate the new gaps which do
not exist for positive phase velocity resonators. We address also for the first time the effects of
dissipation on the electromagnetic properties of such materials. The structures with dissipative
negative-phase velocity materials proposed here should be of interest for future investigations
and applications.

The transmission coefficient and the dispersion relation are calculated in the framework
of a Green’s function method [17]. A brief presentation of the model and of the method of
calculation is presented in section 2. Section 3 contains the numerical illustrations as well as
the discussion of the transmission coefficients for comb-like structures with dissipative negative
phase velocity materials. Conclusions are given in section 4.

2. Theory

Let us consider a quasi-1D composite system made up of a finite segment of length d2 grafted on
an infinite waveguide line (see figure 1). The infinite waveguide is along the z-direction. In this
communication we will address the problem of determining the transmission of electromagnetic
waves and the miniband structure. To calculate the optical properties we apply the interface
response theory. We first construct the Green’s function of an infinite 1D medium parallel to
the z-axis. We consider the lateral dimensions of such a 1D medium to be small compared to
the wavelength of the electromagnetic waves. In this limit the wave equation that satisfies the
Green’s function Gi(z − z ′) is

Fi

αiµi

[
∂2

∂z2
+ α2

i

]
Gi (z, z′) = δ(z − z′), (1)

where Fi = (ω2/c2)εiµi , αi = (ω/c)
√

εiµi , ω is the angular frequency of the electromagnetic
radiation, εi(ω) and µi (ω) are the dielectric function and magnetic permeability of medium
i , respectively, for homogeneous isotropic media. The value of αi is valid for both transverse
electric (TE) and transverse magnetic (TM) polarizations. In what follows we will consider
only electromagnetic modes which satisfy the H = 0 [16, 17] boundary condition.

The Green’s function which solves equation (1) has the form [16, 17]

Gi (z − z′) = eiαi |z−z′ |

2iFi
. (2)

As stated above, we use the interface response theory to investigate optical properties of comb
structures. We first consider a quasi-1D composite system formed out of a finite segment
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Figure 1. (a) Waveguide with a single grafted segment of length d2. (b) Waveguide with a periodic
array of grafted segments of length d2 distant from each other by a length d1. Each medium i is
characterized by the dielectric function εi and magnetic permittivity µi .

of length d2 grafted on an infinite waveguide line. Within the interface response theory, the
corresponding interface Green’s function of the system made up of two semi-infinite lines of
the same dielectric material 1 and a segment of dielectric material 2 of finite length d is obtained
by constructing first the inverse surface Green’s function which takes the form [16, 17]

g−1(0, 0) = 2iαi + α2 tan(α2d2). (3)

To calculate the transmission coefficient we take the formula of Vasseur et al [16],

T = 1

1 + (ε2µ1/4ε1µ2) tan2(α2d2)
. (4)

In this formula we note that for frequency independent dielectric and magnetic responses,
T vanishes when the resonance condition

α2d2 = 2m + 1

2
π, (5)

is met, with m being a positive integer.
Let us consider an infinite comb-like structure composed of finite segments (medium 2) of

length d2 grafted periodically with spacing d1 on an infinite substrate (medium 1). The infinite
line can be modelled as an infinite number of segments of length d1 in the z-direction, each
one being pasted to two neighbours. The inverse surface Green’s function of the composite is
an infinite banded matrix [g∞(M, M)]−1 defined in the interface domain constituted of n sites
which are the connection points between finite segments. Taking into account the translational
symmetry we write [16, 17]

[
g∞(k, M, M)

]−1 = 2α1

sin(α1d1)
[−ξ + cos(kd1)] (6)

for the Fourier transform of the inverse of the Green’s function. In this equation, k is the 1D
propagation wavevector, which is real for passing bands and imaginary for stopping gaps. In
equation (6)

ξ = cos(α1d1) − 1

2

√
ε2µ1

ε1µ2
sin(α1d1) tan(α2d2). (7)

The dispersion relation of the collective normal modes in the infinite periodic comb-like
waveguide is obtained from equations (6) and (7), and is expressed in the form

cos(kd1) = ξ. (8)
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Combining equations (7) and (8), we obtain

cos(kd1) = cos(α1d1) − 1

2

√
ε2µ1

ε1µ2
sin(α1d1) tan(α2d2). (9)

In the absence of dissipation, the dispersion relation (9) can be solved in the following
way. The right-hand side of equation (9) is evaluated for any value of ω. If its absolute value
is smaller than 1, one can obtain a real solution for k, i.e., the corresponding wave propagates
along the axis of the comb-like structure and ω belongs to a pass-band. Otherwise, k becomes a
complex number, the wave cannot propagate and ω belongs to gaps of the comb-like structure.

Let us then consider an incident electromagnetic wave [2, 5] coming from z = −∞,

u(z) = eiα1z. (10)

Following the expression detailed in [16, 17], the corresponding transmission coefficient
is

T =
∣∣∣∣∣

2 sin(α1d1)
(
t2 − 1

)
t N

(
1 − teiα1d1

)2 − t2N
(
t − eiα1d1

)2

∣∣∣∣∣
2

(11)

where N is the number of resonators and t = eikd1 , or equivalently

t =




ξ −
√

ξ 2 − 1, ξ < 1

ξ +
√

ξ 2 − 1, ξ < −1

ξ + i
√

1 − ξ 2, −1 < ξ < 1.

(12)

3. Results

In this section, we shall give some specific illustrations of our theoretical results. We shall
study the effect of the introduction of negative velocity resonators on the frequency spectrum
and the transmission coefficients. In our calculations, we illustrate the band structure and the
transmission coefficient for a comb-like structure in which the dielectric, εi(ω), and magnetic,
µi (ω), responses are frequency dependent, and take the following forms:

εi(ω) = 1 − ω2
pi

ω(ω + iν)
, µi(ω) = 1 − f ω2

ω(ω + iν) − ω2
i

(13)

where ωpi are plasma frequencies, ωi are resonance frequencies, f is a material parameter
and ν the dissipation factor. We focus our attention on frequency regions where both εi(ω)

and µi (ω) are simultaneously negative and the corresponding index of refraction denoted by
ni = −√

εi(ω)µi(ω) is also negative.
The interface response theory may be applied to explore comb-like structures, with both

the waveguide and resonator having negative phase velocity. However, we have considered
it appropriate to work with systems where the waveguide has a positive phase velocity and
the resonator a negative one. In what follows we will use dimensionless parameters: all
quantities will be normalized with respect to the plasma frequency of the combs. We have
chosen the following parameters: ωp2 = 1, (ω0/ωp2) = 0.4, f = 0.56. At frequencies below
ωp2, the dielectric response ε2 is negative, and at frequencies 0.4 � (ω/ωp2) � 0.603, µ2 is
negative; therefore, in the frequency domain 0.4 � (ω/ωp2) � 0.603 medium 2 has a negative
phase velocity. The waveguide has a frequency independent dielectric (ε1 = 2) and magnetic
(µ1 = 1) responses.

In figure 2 we show, for a non-dissipative system, how the number of resonators in
the comb structure modifies the transmission T of electromagnetic waves. Resonances are
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Figure 2. Transmission coefficient as a function of the dimensionless quantity ω/ωp2.

manifested as dips in the transmission spectra of EM waves when the propagation wavevector
satisfies equation (5). Figure 2 shows T for three different systems, where the resonator
has a negative phase velocity with a finite length d2 and the waveguide has a positive phase
velocity. In this figure we take d1 = d2 = 1 in units of c/ωp2. The upper panel (a)
presents results for a finite waveguide with a grafted finite single resonator. The structure of
the transmission is produced by the electromagnetic wave resonance according to the condition
given by equation (5). In the middle panel (b) we present T for a finite comb system with N = 5
grafted branches. In this case, we find low frequency dips, which are also present in T of the
system with only one resonator (panel (a)). In contrast, the high frequency dip of T in panel (a)
evolves into a stopping gap when the number of resonators increases. Moreover, the finite value
of T , for a system with a single resonator, evolves into a series of resonances when the number
of resonators is increased to N = 5 grafted branches. For a comb-like structure with N = 10
grafted branches, the low frequency dips remain unchanged, and the high frequency dip evolves
into a stopping gap, as displayed by the lower panel (c) of figure 2. Dips of T , which do not
correspond to resonances in the resonators, are resonances of the composed systems.

To show the effects of different choices in the size of the waveguide and the resonator, we
display in figure 3, for a non-dissipative system, the transmission intensity (upper panel) and
the miniband structure (lower panel) of comb-like structures. For figure 3 we choose d1 = 1
and N = 5 resonators, and d2 = 2 (left panels) and d2 = 4 (right panels). Dips of the
transmission amplitude in panel (a1) are resonances as in panel (b) of figure 2. We also note in
panel (a1) two frequency regions where the transmission amplitude vanishes (stopping gaps),
which correspond to two resonances in panel (a) of figure 2. The number of resonances as well
as the number of stopping minigaps increase with the resonator size.

To interpret the transmission structure we invoke panels (a2) and (b2) of figure 3, which
depict the dispersion relation of the collective normal modes in the systems. In panel (a2)
at low frequencies we find sharp peaks of the reduced wavevector kd1 which correspond to
dips of the transmission amplitude. At 0.425 � ω

ωp2
� 0.475 there is a frequency region



3688 G H Cocoletzi et al

0.00

0.25

0.50

0.75

1.00

0.40 0.45 0.50 0.55 0.60
0.0

0.5

1.0

1.5

2.0

2.5

3.0

0.40 0.45 0.50 0.55 0.60

tra
ns

m
is

si
on

d
1
=1,  d

2
=2

N=5

(b1)

d
1
=1,  d

2
=4

N=5

(a2)

d
1
=1,  d

2
=2

N=5

re
du

ce
d 

w
av

e 
ve

ct
or

ω/ω
2

(b2)

d
1
=1,  d

2
=4

N=5

ω/ω
2

(a1)

Figure 3. Transmission coefficient and miniband structure as a function of the dimensionless
quantity ω/ωp2 and reduced wavevector kd1. In this case we keep the size of the waveguide constant
and vary the resonator size.

where the wavevector is finite; correspondingly, the transmission amplitude displays dips which
correspond to resonances in the composite system. Moreover, there are two frequency regions
where the wavevector becomes a complex number; these correspond to stopping gaps which
yield no transmission of electromagnetic waves, in agreement with panel (a1). The increase
in the resonator size yields a larger number of peaks in the dispersion relation, which in turn
induces more dips in the transmission amplitude, and at the same time there is a larger number
of minibands and minigaps.

We explore now, still for a non-dissipative system, the effects of keeping the resonator
size constant and varying the waveguide size. Figure 4 shows the transmission spectra (upper
panels) and the reduced wavevector kd1 (lower panels) of systems with resonator size d2 = 2,
N = 5, and d1 = 0.5 (left panels), d1 = 2 (right panels). Similarly to figure 3, the
transmission structure is interpreted in terms of the dispersion relation of the collective normal
modes of the composite system. Dips of the transmission amplitude correspond to sharp peaks
in the reduced wavevector kd1. When the transmission vanishes the reduced wavevector also
vanishes, yielding a structure of minibands and minigaps for the propagation of electromagnetic
waves in the composite system.

Finally we illustrate the effects of dissipation in figure 5 for two values of the dissipation
factor ν. As expected, the sharp peaks are smeared, but the large gap remains observable.

We have also investigated the propagation of electromagnetic waves in comb-like
structures taking into account the boundary condition E = 0, at the extremities of the
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Figure 4. Transmission coefficient and miniband structure as a function of the dimensionless
quantity ω/ωp2 and reduced wavevector kd1. In this case we vary the size of the waveguide and
keep the resonator size constant.
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resonators. The results (not shown) exhibit similar trends to those obtained for the same
structures with the boundary condition H = 0.

4. Conclusions

In conclusion, we have investigated for the first time electromagnetic wave propagation in
comb-like composite structures made up of dissipative negative phase velocity materials. The
quasi-1D composite systems are built up of a waveguide with a periodic array of grafted
segments of length d2 distant from each other by a length d1. We have considered the resonators
to have negative phase velocity, that is, to be materials with negative index of refraction,
while the waveguides were supposed to have positive phase velocity. For a system with a
single resonator the transmission amplitude displays dips which correspond to resonances of
the electromagnetic waves in the resonator (see figure 2(a)). As the number of resonators
increases, some dips remain in the structure of the transmission T , while some of them evolve
into stopping minigaps (see figures 2(b) and (c)). The structure of T for systems with more
than one resonator is described in terms of the reduced wavevector of the collective normal
modes, which displays peaks for the resonances of T . Zero T corresponds to non-real values
of the reduced wavevector and defines stopping minigaps. The number of dips of T as well as
the allowed minibands and stopping minigaps increases with the number of resonators in the
composite system. Dissipation smears the sharp peaks in the transmission spectra, but the large
gaps remain observable and may be of interest for future investigations and applications.
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